Cooperative Games

Lecture 8: Simple Games

Stéphane Airiau
ILLC - University of Amsterdam

A class of simple games

Example 1

Definition (weighted voting games)
A game $\left(N, w_{i \in N}, q\right)$ is a weighted voting game when v satisfies unanimity, monotonicity and the valuation

$$
\begin{aligned}
& \text { function is defined as } \\
& v(S)=\left\{\begin{array}{l}
1 \text { when } \sum_{i \in S} w_{i} \geqslant q \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Unanimity requires that $\sum_{i \in N} w_{i} \geqslant q$.
If we assume that $\forall i \in N \quad w_{i} \geqslant 0$, monotonicity is guaranteed.
For the rest of the lecture, we will assume $w_{i} \geqslant 0$.
We will note a weighted voting game $\left(N, w_{i \in N}, q\right)$ as $\left[q ; w_{1}, \ldots, w_{n}\right]$.

A weighted voting game is a succinct representation, as we only need to define a weight for each agent and a threshold.

P1 Stephane Airiau (ILLC)-Cooperative Games

Let us consider the game $[q ; 4,2,1]$.

- $q=1$: minimal winning coalitions: $\{1\},\{2\},\{3\}$
- $q=2$: minimal winning coalitions: $\{1\},\{2\}$
- $q=3$: minimal winning coalitions: $\{1\},\{2,3\}$
- $q=4$: minimal winning coalition: $\{1\}$
- $q=5$: minimal winning coalitions: $\{1,2\},\{1,3\}$
- $q=6$: minimal winning coalition: $\{1,2\}$
- $q=7$: minimal winning coalition: $\{1,2,3\}$
for $q=4$ ("majority" weight), 1 is a dictator, 2 and 3 are dummies.
- Simple games: a class of TU games for modeling voting
- Measuring the power of a voter: Shapley Shubik, Banzhaff and Co

Formal definition of common terms in voting

Definition (Dictator)

Let (N, v) be a simple game. A player $i \in N$ is a dictator iff $\{i\}$ is a winning coalition.
Note that with the requirements of simple games, it is possible to have more than one dictator!

Definition (Veto Player)
Let (N, v) be a simple game. A player $i \in N$ is a veto player if $N \backslash\{i\}$ is a losing coalition. Alternatively, i is a veto player iff for all winning coalition $\mathcal{C}, i \in \mathcal{C}$.

It also follows that a veto player is member of every minimal winning coalitions
Definition (blocking coalition)
A coalition $\mathcal{C} \subseteq N$ is a blocking coalition iff \mathcal{C} is a losing coalition and $\forall S \subseteq N \backslash \mathcal{C}, S \backslash \mathcal{C}$ is a losing coalition.

睤 Stephane Airiau (ILLC)-Cooperative Games

- Let us consider the game $[10 ; 7,4,3,3,1]$.

The set of minimal winning coalitions is $\{\{1,2\} 1,3\}\{1,4\} 2,3,4\}\}$

Player 5, although it has some weight, is a dummy.
Player 2 has a higher weight than player 3 and 4, but it is clear that player 2,3 and 4 have the same influence.

- Let us consider the game [51; 49,49,2]

The set of winning coalition is $\{\{1,2\},\{1,3\},\{2,3\}\}$.
It seems that the players have symmetric roles, but it is not reflected in their weights.

Weighted voting game is a strict subclass of voting games i.e., all voting games are not weighted voting games.

Example: Let $(\{1,2,3,4\}, v)$ a voting game such that the set of minimal winning coalitions is $\{\{1,2\},\{3,4\}\}$. Let us assume we can represent (N, v) with a weighted voting game $\left[q ; w_{1}, w_{2}, w_{3}, w_{4}\right]$.
$v(\{1,2\})=1$ then $w_{1}+w_{2} \geqslant q$
$v(\{3,4\})=1$ then $w_{3}+w_{4} \geqslant q$
$v(\{1,3\})=0$ then $w_{1}+w_{3}<q$
$v(\{2,4\})=0$ then $w_{2}+w_{4}<q$
But then, $w_{1}+w_{2}+w_{3}+w_{4}<2 q$ and $w_{1}+w_{2}+w_{3}+w_{4} \geqslant 2 q$, which is impossible. Hence, (N, v) cannot be represented by a weighted voting game. \downarrow

Theorem

Let (N, v) be a simple game. Then
$\operatorname{Core}(N, v)=\left\{\begin{array}{l|l}x \in \mathbb{R}^{n} & \begin{array}{l}x \text { is an imputation } \\ x_{i}=0 \text { for each non-veto player } i\end{array}\end{array}\right\}$

Proo

\subseteq Let $x \in \operatorname{Core}(N, v)$. By definition $x(N)=1$. Let i be a non-veto player. $x(N \backslash\{i\}) \geqslant v(N \backslash\{i\})=1$. Hence $x(N \backslash\{i\})=1$ and $x_{i}=0$.
\supseteq Let x be an imputation and $x_{i}=0$ for every non-veto player i. Since $x(N)=1$, the set V of veto players is non-empty and $x(V)=1$.
Let $\mathcal{C} \subseteq N$. If \mathcal{C} is a winning coalition then $V \subseteq \mathcal{C}$, hence $x(\mathrm{C}) \geqslant v(\mathrm{C})$. Otherwise, $v(\mathrm{C})$ is a losing coalition (which may contain veto players $)$, and $x(\mathcal{C}) \geqslant v(\mathcal{C})$. Hence, x is group rational.

Theorem

A simple game (N, v) is convex iff it is a unanimity
game $\left(N, v_{V}\right)$ where V is the set of veto players.

Proof

A game is convex iff $\forall S, T \subseteq N v(S)+v(T) \leqslant v(S \cap T)+v(S \cup T)$.
\Rightarrow Let us assume (N, v) is convex.
If S and T are winning coalitions, $S \cup T$ is a winning coalition by monotonicity. Then, we have $2 \leqslant 1+v(S \cap T)$ and it follows that $v(S \cap T)=1$. The intersection of two winning coalitions is a winning coalition.
Moreover, from the definition of veto players, the intersection of all winning coalitions is the set V of veto players. Hence, $v(V)=1$. By monotonicity, if $V \subseteq \mathcal{C}, v(\mathcal{C})=1 \boldsymbol{\vee}$ Otherwise, $V \nsubseteq \mathcal{C}$. Then there must be a veto player $i \notin \mathcal{C}$, and it must be the case that $v(\mathcal{C})=0 \boldsymbol{\downarrow}$ Hence, for all coalition $\mathcal{C} \subseteq N, v(\mathcal{C})=1$ iff $V \subseteq \mathcal{C}$.

Proof

(continuation)

\Leftarrow Let $\left(N, v_{V}\right)$ a unanimity game. Let us prove it is a convex game. Let $S \subseteq N$ and $T \subseteq N$, and we want to prove that $v(S)+v(T) \leqslant v(S \cup T)+v(S \cap T)$.

- case $V \subseteq S \cap T$: Then $V \subseteq S$ and $V \subseteq T$, and we have $2 \leqslant 2 \boldsymbol{V}$
case $V \nsubseteq S \cap T \wedge V \subseteq S \cup T$:
- if $V \subseteq S$ then $V \nsubseteq T$ and $1 \leqslant 1 \boldsymbol{V}$
- if $V \subseteq T$ then $V \nsubseteq S$ and $1 \leqslant 1 \boldsymbol{v}$
- otherwise $V \nsubseteq S$ and $V \nsubseteq T$, and then $0 \leqslant 1 \boldsymbol{\vee}$
- case $V \nsubseteq S \cup T$: then $0 \leqslant 0 \boldsymbol{\downarrow}$

For all cases, $v(S)+v(T) \leqslant v(S \cup T)+v(S \cap T)$, hence a unanimity game is convex.
In addition, all members of V are veto players.

Convex simple games are the games with a single minimal winning coalition.

Banzhaff power index

Let (N, v) be a TU game.

- We want to count the number of coalitions in which an agent is a swing agent.
- For each coalition, we determine which agent is a swing agent (more than one agent may be pivotal).
- The raw Banzhaff index of a player i is
$\beta_{i}=\frac{\sum_{\mathfrak{C} \subseteq N \backslash\{i\}} v(\mathcal{C} \cup\{i\})-v(\mathcal{C})}{2^{n-1}}$.
- For a simple game $(N, v), v(N)=1$ and $v(\emptyset)=0$, at least one player i has a power index $\beta_{i} \neq 0$. Hence, $B=\sum_{j \in N} \beta_{j}>0$.
- The normalized Banzhaff index of player i for a simple game (N, v) is defined as $I_{B}(N, v, i)=\frac{\beta_{i}}{B}$.
The index corresponds to the expected marginal utility assuming all coalitions are equally likely.

Examples: [7; 4,3,2,1]

The Shapley value and Banzhaff index may be different.
winning coalitions:
$\{1,2\}$
$\{1,2,3\}$
$\{1,2,4\}$
$\{1,3,4\}$
$\{1,2,3,4\}$

	1	2	3	4
β	$\frac{5}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$I_{B}(N, v, i)$	$\frac{1}{2}$	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{1}{10}$

ff index may be different.

- Coleman indices: all winning coalitions are equally likely. Let $\mathcal{W}(N, v)$ be the set of all winning coalitions
- The power of collectivity to act: $P_{a c t}$ is the probability that a winning vote arise.

$$
P_{\text {act }}=\frac{|\mathcal{W}(N, v)|}{2^{n}}
$$

- The power to prevent an action: $P_{\text {prevent }}$ captures the power of i to prevent a coalition to win by withholding its vote.

$$
P_{\text {prevent }}=\frac{\sum_{\mathcal{C} \subseteq N \backslash\{i\}} v(\mathcal{C} \cup\{i\})-v(\mathcal{C})}{|\mathcal{W}(N, v)|}
$$

- The power to initiate an action: $P_{\text {init }}$ captures the power of i to join a losing coalition so that it becomes a winning one.

$$
P_{\text {init }}=\frac{\sum_{\mathcal{C} \subseteq N \backslash\{i\}} v(\mathcal{C} \cup\{i\})-v(\mathcal{C})}{2^{n}-|\mathcal{W}(N, v)|}
$$

- Maybe only minimal winning coalitions are importan to measure the power of an agent (non-minimal winning coalitions may form, but only the minimal ones are important to measure power).
- Let (N, v) be a simple game, $i \in N$ be an agent.
$\mathcal{M}(N, v)$ denotes the set of minimal winning coalitions, $\mathcal{M}_{i}(N, v)$ denotes the set of minimal winning coalitions containing i.
- The Deegan-Packel power index of player i is:

$$
I_{D P}(N, v, i)=\frac{1}{|\mathcal{M}(N, v)|} \sum_{\mathcal{C} \in \mathcal{M}_{i}(N, v)} \frac{1}{|\mathcal{C}|}
$$

- The public good index of player i is defined as

$$
I_{P G}(N, v, i)=\frac{\left|\mathcal{M}_{i}(N, v)\right|}{\sum_{j \in N}\left|\mathcal{M}_{j}(N, v)\right|} .
$$

- We introduced the simple games
- We considered few examples
- We studied some power indices
- Representation and Complexitity issues
- Are there some succinct representations for some classes of games.
- How hard is it to compute a solution concept?

